# 150 WATTS

#### DC2-150 SERIES DC-DC

## **FEATURES:**

- RoHS Compliant
- 18-36 VDC Input
- Advanced SMT Design
- Compact 3.83" x 6" x 1.32" Size
- 2 Year Warranty
- One to Four Outputs
- 4242 VDC Reinforced Insulation





- Fits 1U Applications
- EN 60950-1 ITE Certification
- EN 60601-1 Medical Certification
- Size & Pin compatible with REL-150 Series
- Optional Chassis and Cover



CHASSIS/COVER

| SAFETY S         | PECIFICATIONS                     |                                          |  |
|------------------|-----------------------------------|------------------------------------------|--|
|                  | Underwriters                      | UL 60950-1 2 <sup>nd</sup> Edition, 2007 |  |
| c <b>FM</b> us   | Laboratories                      | UL 60601-1 1st Edition, 2006             |  |
| U # 455 US       | File E137708/E140259              | AAMI/ANSI ES6060-1, 2005                 |  |
|                  |                                   | CB Reports/Certificates (including all   |  |
| TEREE            |                                   | National and Group Deviations)           |  |
| IECEE            |                                   | IEC 60950-1/A1:2009, Second Edition      |  |
| SCHEME           |                                   | IEC 60601-1:1988, +A1:1991 +A2:1995      |  |
|                  |                                   | IEC 60601-1:2005 Third Edition           |  |
|                  | III Decognition                   | CAN/CSA-C22.2 No. 60950-1-07,            |  |
|                  | UL Recognition<br>Mark for Canada | 2 <sup>nd</sup> Edition                  |  |
| c <b>71</b> 2 us | File E137708/E140259              | CAN/CSA-C22.2 No. 601-1-M90, 2005        |  |
| U = W U3         |                                   | CAN/CSA-C22.2 No. 60601-1:2008           |  |
| 3                |                                   | EN 60950-1/A1:2010                       |  |
| TUV              | TUV                               | EN 60601-1/A2:1995                       |  |
| 300              |                                   | EN 60601-1:2006                          |  |
|                  |                                   |                                          |  |



Low Voltage Directive (2006/95/EC of December 2006)

| MODEL LIS    | DIING                    |                         |                         |                         |
|--------------|--------------------------|-------------------------|-------------------------|-------------------------|
| MODEL        | OUTPUT 1 <sub>(8)</sub>  | OUTPUT 2 <sub>(8)</sub> | OUTPUT 3 <sub>(7)</sub> | OUTPUT 4 <sub>(7)</sub> |
| DC2-150-4001 | +3.3V/15A <sub>(1)</sub> | +5V/8A                  | +12V/2A                 | -12V/2A                 |
| DC2-150-4002 | +5V/15A <sub>(1)</sub>   | +3.3V/8A                | +12V/2A                 | -12V/2A                 |
| DC2-150-4003 | +5V/15A <sub>(1)</sub>   | +3.3V/8A                | +15V/2A                 | -15V/2A                 |
| DC2-150-4004 | +5V/15A <sub>(1)</sub>   | -5V/8A                  | +12V/2A                 | -12V/2A                 |
| DC2-150-4005 | +5V/15A <sub>(1)</sub>   | -5V/8A                  | +15V/2A                 | -15V/2A                 |
| DC2-150-4006 | +5V/15A <sub>(1)</sub>   | +24V/3A                 | +12V/2A                 | -12V/2A                 |
| DC2-150-4007 | +5V/15A <sub>(1)</sub>   | +24V/3A                 | +15V/2A                 | -15V/2A                 |
| DC2-150-3001 | +5V/15A <sub>(1)</sub>   | +12V/4A                 |                         | -12V/3A                 |
| DC2-150-3002 | +5V/15A <sub>(1)</sub>   | +15V/3A                 |                         | -15V/2A                 |
| DC2-150-2001 | +3.3V/15A <sub>(1)</sub> | +5V/8A                  |                         |                         |
| DC2-150-2002 | +5V/15A <sub>(1)</sub>   | +12V/5A                 |                         |                         |
| DC2-150-2003 | +5V/15A <sub>(1)</sub>   | +24V/3A                 |                         |                         |
| DC2-150-2004 | +12V/7.5A                | -12V/5A                 |                         |                         |
| DC2-150-2005 | +15V/5A                  | -15V/5A                 |                         |                         |
| DC2-150-1001 | 2.5V/30A <sub>(2)</sub>  |                         |                         |                         |
| DC2-150-1002 | 3.3V/30A <sub>(2)</sub>  |                         |                         |                         |
| DC2-150-1003 | 5V/30A <sub>(2)</sub>    |                         |                         |                         |
| DC2-150-1004 | 12V/12.5A                |                         |                         |                         |
| DC2-150-1005 | 15V/10.0A                |                         |                         |                         |
| DC2-150-1006 | 24V/6.3A                 |                         |                         |                         |
| DC2-150-1007 | 28V/5.4A                 |                         |                         |                         |
| DC2-150-1008 | 48V/3.1A                 |                         |                         |                         |
|              |                          |                         |                         |                         |

## **NOTES**

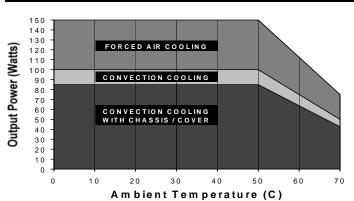
Consult factory for alternate output configurations.

Consult factory for positive, negative or floating outputs.

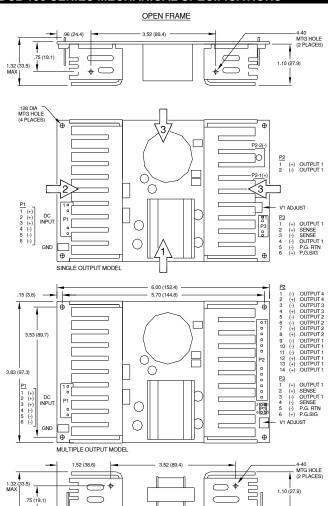
Refer to Applications Information for complete output power ratings.

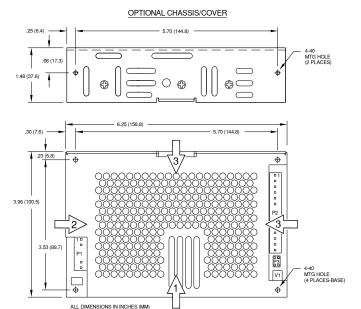
All specifications are maximum at 25° C, 150W unless otherwise stated, may vary by model and are subject to change without notice.

Specify optional chassis and cover, power good or reverse input protection when ordering.


| OUTPUT SPECIFICATION          | ONS              |             |                           |
|-------------------------------|------------------|-------------|---------------------------|
| Total Output Power at 50°C    | 100W             | Convection  |                           |
|                               | 150W             | 300 LFM F   | Forced Air                |
| Output Voltage Centering      | Output 1:        | ± 0.5%      | (All outputs at 50% load) |
|                               | Output 2:        | $\pm 5.0\%$ |                           |
|                               | Output 3:        | $\pm 5.0\%$ |                           |
|                               | Output 4:        | $\pm 5.0\%$ |                           |
| Output Voltage Adjust Range   | Output 1:        | 95 - 105%   | ı                         |
| Load Regulation               | Output 1:        | 0.5%        | (10-100% load change)     |
|                               | Output 2:        | 5.0%        | (10-100% load change)     |
|                               | (4001-5 Models)  | 8.0%        | (20-100% load change)     |
|                               | (2001 Model)     | 6.0%        | (20-100% load change)     |
|                               | Output 3:        | 5.0%        | (10-100% load change)     |
|                               | Output 4:        | 5.0%        | (10-100% load change)     |
| Source Regulation             | Outputs 1 – 4:   | 0.5%        |                           |
| Cross Regulation              | Outputs 2 – 4:   | 5.0%        |                           |
| Output Noise                  | Outputs 1 – 4:   | 1.0%        |                           |
| Turn on Overshoot             | None             |             |                           |
| Transient Response            | Outputs 1 – 4    |             |                           |
| Voltage Deviation             | 5.0%             |             |                           |
| Recovery Time                 | 500μS            |             |                           |
| Load Change                   | 50% to 100%      |             |                           |
| Output Overvoltage Protection | Output 1:        | 110% to 15  | 0%                        |
| Output Overpower Protection   | 110-160% rated I | Pout, cycle | on/off, auto recovery     |
| Start Up Time 5 Seconds       |                  |             |                           |
| INPUT SPECIFICATION           | IS               |             |                           |

| Start op Time               | o occorias                                    |
|-----------------------------|-----------------------------------------------|
| <b>INPUT SPECIFICATIO</b>   | NS                                            |
| Input Voltage Range         | 18-36 VDC                                     |
| Input Under-Voltage Lockout |                                               |
| Turn-0n Voltage             | 14.5-17.5 VDC                                 |
| Turn-off Voltage            | 14.0-17.0 VDC                                 |
| Input Overvoltage Shutdown  | 37.0-43.0 VDC                                 |
| Maximum Input Current       | 11.5 A                                        |
| Reflected Ripple Current    | 5 %                                           |
| Efficiency                  | 82% Typ., Full Power, 24 VDC, varies by model |


| 2                           | 0270 1 3617 1 411 1 011017 2 1 12 07 141100 23 1110401 |
|-----------------------------|--------------------------------------------------------|
| <b>ENVIRONMENTAL SPE</b>    | CIFICATIONS                                            |
| Ambient Operating           | 0° C to + 70° C                                        |
| Temperature Range           | Derating: See Power Rating Chart                       |
| Ambient Storage Temp. Range | - 40° C to + 85° C                                     |
| Temperature Coefficient     | Outputs 1 – 4: 0.02%/°C                                |


| GENERAL SPECIFICATIONS     |                                                             |  |
|----------------------------|-------------------------------------------------------------|--|
| Means of Protection        |                                                             |  |
| Primary to Secondary       | 2MOOP (Means of Operator Protection)                        |  |
| Primary to Ground          | 1MOOP (Means of Operator Protection)                        |  |
| Secondary to Ground        | Operational Insulation) Consult factory for 1MOOP or 1MOPP) |  |
| Dielectric Strength(17)    |                                                             |  |
| Reinforced Insulation      | 4242 VDC, Primary to Secondary, 1 Sec.                      |  |
| Basic Insulation           | 2121 VDC, Primary to Ground, 1 Sec.                         |  |
| Operational Insulation     | 707 VDC, Secondary to Ground, 1 Sec.                        |  |
| Power Good Signal          | Logic high with input voltage above Vin min.                |  |
| Remote Sense               | 250mV compensation of output cable losses                   |  |
| Mean-Time Between Failures | 100,000 Hours min., MIL-HDBK-217F, 25° C, GB                |  |
| Weight                     | 0.90 Lbs. Open Frame                                        |  |
| -                          | 1.60 Lbs. Chassis and Cover                                 |  |

# MAXIMUM OUTPUT POWER VS. AMBIENT TEMPERATURE



#### DC2-150 SERIES MECHANICAL SPECIFICATIONS





## APPLICATIONS INFORMATION

- 1. Rated 12A maximum with convection cooling.
- 2. Rated 20A maximum with convection cooling.
- Total power must not exceed 100 watts with convection cooling on open frame models except where noted.
- Total power must not exceed 150 watts with 300 LFM forced air cooling on open frame models.
- 5. Total power must not exceed 85 watts with convection cooling and chassis/cover option.
- Total power must not exceed 150 watts with 300 LFM forced air cooling and chassis/cover option.
- 7. Total current from Outputs 3 & 4 must not exceed 3 amps with convection cooling.
- 8. Total current from Outputs 1 & 2 must not exceed 15 amps with convection cooling.
- 9. Semiconductor case temperatures must not exceed 110°C.
- Each output can deliver its rated current but total output power must not exceed maximum power as determined by the cooling method stated above.
- Sufficient area must be provided around convection cooled power supplies to allow natural movement of air to develop.
- 300 linear feet per minute of airflow must be maintained one inch above any point of the heatsink in the direction shown when forced air cooling is required.
- This product is intended for use as a professionally installed component within information technology and medical equipment.
- A minimum load of 10% is required on output one to ensure proper regulation of remaining outputs.
- 15. Remote sense terminals may be used to compensate for cable losses up to 250mV. The use of a twisted pair is recommended as well as a decoupling capacitor  $(0.1 10\mu F)$  and a capacitor of  $100\mu F$ /amp connected across the load side.
- 16. Peak to peak output ripple and noise is measured directly at the output terminals of the power supply, without the use of the probe ground lead or retractable tip, 20 MHz handwidth
- 17. This product was type tested and safety certified using the dielectric strength test voltages listed in Table 6 of IEC 60601-1:2005. In consideration of Clause 8.8.3, care must be taken to insure that the voltage applied to a reinforced insulation does not overstress different types and levels of insulation. Primary and secondary to ground capacitors may need to be disconnected prior to performing a dielectric strength test on the power supply or the end product. It is highly recommended that the DC test voltages listed in DVB.1, Annex DVB of UL 60601-1 1st Edition are not exceeded during a production-line dielectric strength test of the assembled end product. Please consult factory for further information.
- This power supply has been safety approved and final tested using a DC dielectric strength test. Please consult factory before performing an AC dielectric strength test.
- Maximum screw penetration into bottom chassis mounting holes is .100 inches.
- 20. Maximum screw penetration into side chassis mounting holes is .250 inches.
- To meet emissions specifications, all four mounting hole pads must be electrically connected to a common metal chassis. Chassis/cover option recommended.

|    | connected to a c         | ommon metal enassis. Onassis/cover option recommended.                                                                                           |
|----|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| CO | NNECTOR S                | SPECIFICATIONS                                                                                                                                   |
| P1 | DC Input                 | .156 friction lock header mates with Molex 09-50-3061 or<br>equivalent crimp terminal housing with Molex 2478 or<br>equivalent crimp terminal.   |
| P2 | DC Output<br>(Single)    | 6-32 screw down terminal mates with #6 ring tongue terminal. (10 in-lb max)                                                                      |
| P2 | DC Output<br>(Multiple)  | .156 friction lock header mates with Molex 09-50-3141 or<br>equivalent crimp terminal housing with Molex 2478 or<br>equivalent crimp terminal.   |
| G  | Ground                   | .187 quick disconnect terminal.                                                                                                                  |
| P3 | P.G./Sense<br>(Single)   | .100 breakaway header mates with Molex 50-57-9006 or<br>equivalent crimp terminal housing with Molex type 71851 or<br>equivalent crimp terminal. |
| P3 | P.G./Sense<br>(Multiple) | .100 breakaway header mates with Molex 22-55-2061 or<br>equivalent crimp terminal housing with Molex type 70058 or<br>equivalent crimp terminal. |

#### RECOMMENDED AIR FLOW DIRECTION

1 – Optimum 2 – Good 3 – Fair